Optics all around: interview of Gerald Persaud

Amelia Dalton from EE Journal interviews Gerald Persaud, Reflex Photonics' V.P. Business Development.

This week we investigate embedded optical modules with Gerry Persaud from Reflex Photonics - The Light on Board Company. Gerry and I discuss the benefits of  their chip-sized embedded optical modules and why Reflex Photonics stands out in the optical module ecosystem. 

Lear more on Mr. Persaud, V.P. Business Development

Gerald Persaud | V.P. Business Development

Gerald Persaud is responsible for overseeing global marketing, business development and customer initiatives related to the Reflex Photonic's product lines, as well as managing product development and customer technical support. 
Read more

Gerald has over 20 years experience in telecom and defense. Prior to joining Reflex Photonics he held senior management roles in engineering and business development at Nortel, General Dynamic Canada, and Celestica. Gerald has developed many leading products in optical communication, wireless and advanced computing. Gerald doubled revenues at start-up Coresim in one year and precipitated an acquisition by Celestica. He also won the largest design contract ever in Celestica for an OTN switch.
Gerald holds a B.S. in Electrical Engineering at McMaster University.

Taking the Fast Bridge between Neural Networks

Gerald Persaud, V.P. Business Development at Reflex Photonics gets interviewed by Embedded Systems Engineering

Read the whole interview here.

Lear more on Mr. Persaud, V.P. Business Development

Gerald Persaud | V.P. Business Development

Gerald Persaud is responsible for overseeing global marketing, business development and customer initiatives related to the Reflex Photonic's product lines, as well as managing product development and customer technical support. 
Read more

Gerald has over 20 years experience in telecom and defense. Prior to joining Reflex Photonics he held senior management roles in engineering and business development at Nortel, General Dynamic Canada, and Celestica. Gerald has developed many leading products in optical communication, wireless and advanced computing. Gerald doubled revenues at start-up Coresim in one year and precipitated an acquisition by Celestica. He also won the largest design contract ever in Celestica for an OTN switch.
Gerald holds a B.S. in Electrical Engineering at McMaster University.

Mr Persaud was interviewed by Ms. Lynnette Reese, Editor-in-Chief, Embedded Systems Engineering
Here are the answers from Mr. persaud:

(...) Reflex Photonics provides tiny optical transceiver chips that can move a tremendous amount of data, which reduces the latency between GPUs so that they can appear as though working seamlessly, in parallel. (...) Technology for optical interconnects is vital in the industry, since processor speeds are outpacing copper wires for bandwidth and latency among devices, including VPX. During our recent interview, Gerald Persaud, VP Business Development at Reflex Photonics, told me this is a solvable problem, even in the harsh environments of military and outer space.

What is Reflex Photonics currently developing?

Today, we are focused on aerospace and defense, and industrial markets. Our expertise is delivering chip sized rugged high bandwidth optical transceivers that work in the harshest environments, such as space. For example, we were recently selected for a major satellite program because our parts could meet the required 20 years lifetime in space. Many optical transceiver suppliers claim high bandwidth operation at 25Gbps per channel but only for an operating temperature of 0 to 70ºC. All of Reflex Photonics’ rugged transceivers operate error-free over a temperature range of -50 to 100ºC while also meeting severe shock, vibration, damp heat, and thermal cycling requirements.

Reflex Photonics’ expertise is in ruggedized optical communications. How did your process for dealing with the challenges of harsh environments evolve?

In 2002 when we started the company our goal was to create a chip-size optical module that could be solder reflowed to support low-cost board assembly. This was much harder than we had imagined due to differences in material properties such as thermal expansion, thermal conductivity, and curing processes. Over the years we were able to incrementally improve our manufacturing processes from a commercial offering to a full space-qualified part. An excellent understanding of materials and processing is critical to the successful production of high-bandwidth rugged optical modules.

What is on your roadmap?

We plan to release higher channel speeds up to 56Gbps, more I/O density such as 24 transmitters or receivers in a chip size optical module. As well, we will continue to harden our parts to meet even wider temperature extremes of -65 to 125oC. Another product we recently released is active blind-mate optical connectors called LightCONEX®. We have gained a great deal of interest in this solution from the VPX community, as it frees up a lot of board space and simplifies field upgrades.

Can you give an example where Reflex Photonics has a play in VPX for machine learning?

One example of this is in unmanned vehicles where machine learning is critical for autonomous operation. Many sensors are interconnected to machine learning VPX compute farms via an optical switch. Optical interconnect, with its long reach, high bandwidth and light weight, is the only viable solution for advanced Autonomous Vehicles (AVs). From the start, Reflex set out to make the smallest rugged optical modules capable of supplying enormous bandwidth (BW) and optical channels. Today, Reflex Photonics’ rugged technologies are field proven and well positioned to take advantage of the trend for smarter, smaller, and robust systems.

How are you dealing with power challenges in a Small Form Factor (SFF)?

Power is indeed a challenge for mobile vehicles, which have a limited amount of power to supply onboard electronics. Today a 150Gbps chip consumes about 1.3 W. However, as bandwidth demand grows from 150Gbps to 2400Gbps over the next five to 10 years we cannot scale power linearly or the same chip will consume 21 W. And there are multiple chips per board!  We will need to introduce techniques to improve optical coupling efficiency and lower laser bias currents. As well, laser drivers and amplifier will need to operate at lower voltages. Closer integration of the drive electronics with optical transceivers could save a lot of power as the need for Clock and Data Recovery (CDR), equalizer, or pre-emphasis could be eliminated.

What are your competitors doing? How is Reflex Photonics any different?

Everyone including Reflex is racing to increase BW and interconnect density. However, in the aerospace and defense sector, suppliers must also meet the challenges of operating in a very harsh environment while keeping space, weight, and power [SWaP] to a minimum. Reflex is different in that we were the first to deliver a 150Gbps chip-size optical module that could operate from -50 to 100ºC while consuming 1.2 W. Most recently Reflex launched the first radiation-hardened parallel optical chip for space applications. These chips passed extreme environmental test conditions that our competitors were unable to meet. This is excellent news for the space industry, where size and weight are critical and smallsats are expected to do far more than their predecessors.

I have always considered price to be a specification. How is your pricing affected by ultra-hardening for space?

The price differential is not as significant as most would expect. In the old days when you said “space,” it meant 10 times the price. Those days are gone. There might be 30% increase in price for space grade over a military grade device. One grade down from military is the industrial device, which has similar operating temperatures but is not expected to have as long a life as Space and MIL grade parts.

Can you detail some of the challenges for optics at extreme operating temperatures?

Optical transceivers require exact alignment (less than five micrometers) of the laser or photodetector to the optical coupler. One challenge is maintaining this alignment over a wide temperature range. Reflex developed a patented approach using materials with low coefficient of thermal expansion and a simple coupling structure with no intermediate lens to maintain alignment over a wide temperature range of -57 to 125ºC. Another challenge is having a cost-effective sealing method (for moisture resistance in the optical path) that will withstand many thermal cycles without compromising the mechanical integrity of the module. Of course, there are other challenges like radiation hardening, solder reflow temperature survival, low power, optical sensitivity, and signal integrity.

What are the different grades of products that you have for harsh environments?

Most of our sales are for MIL, Space and Industrial grade parts. We offer some commercial grades such as QSFP and CFP for Telecom/Datacom markets. Our industrial components are used in many applications such as commercial aircraft, semiconductor wafer inspection, and instrumentation and tests. Most recently, we have had a number of automotive applications for our industrial parts.

Where would the automotive or transportation industry need rugged optical transceivers?

The automotive industry is quite large and includes cars, city buses, transport trucks, and other vehicles. We expect as self-driving or assisted driving goes mainstream fiber-optics will interconnect all systems in the vehicle. Compact AI engines will connect many sensors to automate driving. The vehicles of tomorrow will provide great energy efficiencies, less pollution, and a comfortable and productive driving experience. NVidia is now offering small form factor AI engines that are already deployed in Unmanned Aerial Vehicles.

Any optical transceiver is still going to need fiber to transport the signal in a system. Isn’t vibration a real problem for this kind of signaling in a vehicle?

No. Our parts have been tested to MIL-STD-883, Method 2007.3 for vibration and Method 2002.4 for shock. Vibration is 20 to 2000Hz, 20g, 16 minutes per axis and shock is 500g, 0.5ms pulse, 5 repetitions, 6 directions. These tests were done while transmitting and receiving 150Gbps with no errors.

That’s impressive. What distance and latency are we talking about?

Distance in AVs are typically less than 100 m, and latency is less than 1 microsecond.

Do you see Reflex Photonics involved in Autonomous Vehicles (AVs) someday?

Yes, AVs will require fiber-optics for security, bandwidth, latency, and SWaP. As the leading provider of rugged high bandwidth optical transceivers, Reflex is well positioned to deliver the most reliable optical interconnect for AVs. For large AV industries like commercial automotive one big challenge will be reducing the price of optical transceivers while keeping all the ruggedization testing in place. This will happen over a number of years, and so we will invest accordingly to track market prices.

When do you think AVs will start to get traction?

When the technology is considered safe adoption will happen. This will require years of education and trials. One area of concern is cybersecurity—nobody wants a hacker taking over their vehicle at 60 miles per hour. An effective strategy will be needed to isolate critical control functions from infotainment. This separation is done in commercial aircraft and similar standards will be imposed on AVs. Fiber-optics provide the first level of defense since they are immune to electromagnetic interference and therefore harder to disrupt. As well, learning machines will be smart enough to initiate automatic protection from dangerous threats. Protection techniques commonly used by military aircraft could be deployed.

How do you think the Autonomous Vehicle is going to play out, in reality?

The benefits of autonomous vehicles have long been known, but safety has always been a barrier. The recent advances in AI and low-cost sensors has generated great hope for convenient, safe and cost-effective people transport. Like everyone, I see a gradual shift to AV starting with assisted driving available now to special lanes for AV followed by AV completely dominating the roads. I see China embracing this technology to solve local pollution issues while seizing the opportunity to lead the automotive industry.

Sign up for Reflex Photonics' Newsletter

Sign up for Reflex Photonics' Newsletter

Reflex Photonics Newsletter Stay up to date and informed on new products and announcements with our newsletter.
The newsletter is published 6 times a year. (English only)

Your name (required)

Your Email (required)

Your Company

Sign me up for Reflex Photonics' Newsletter

By using this form you agree with the storage and handling of your data by this website. You may withdraw this consent at any time. Visit the Privacy Policy page to learn more.


Gerald Persaud (V.P. Business Development) contributes to VITA roundtable

Gerald Persaud, V.P. Business Development at Reflex Photonics was given the opportunity to participate in a VITA expert roundtable.

Read the whole roundtable discussion here.

Lear more on Mr. Persaud, V.P. Business Development

Gerald Persaud | V.P. Business Development

Gerald Persaud is responsible for overseeing global marketing, business development and customer initiatives related to the Reflex Photonic's product lines, as well as managing product development and customer technical support. 
Read more

Gerald has over 20 years experience in telecom and defense. Prior to joining Reflex Photonics he held senior management roles in engineering and business development at Nortel, General Dynamic Canada, and Celestica. Gerald has developed many leading products in optical communication, wireless and advanced computing. Gerald doubled revenues at start-up Coresim in one year and precipitated an acquisition by Celestica. He also won the largest design contract ever in Celestica for an OTN switch.
Gerald holds a B.S. in Electrical Engineering at McMaster University.

Different questions were being answered by the roundtable experts. Here are Mr. Persaud's answers:

What drivers pushing VITA technologies forward most affect your customers and company, and how are you responding?

Electronic Warfare is evolving faster than ever, as computing power increases exponentially and AI algorithms and sensor technology become more sophisticated. With new Electronic Warfare threats arriving at an alarmingly fast pace, VITA systems are being architected to scale quickly and cost effectively.
Fiber optics, with its enormous bandwidth, is the best interconnect technology for scaling systems. Once the fiber optic infrastructure is installed, it supports multiple technology generations with no change. We support scaling with an array of ruggedized optical transceivers offering line speeds of up to 25 Gbps and I/O densities up to 24 lanes in small chip size modules. In the near future, we will double line rate to 56 Gbps, and we’ll further ruggedize our optical transceivers for more harsh environments, such as space, where radiation hardness is needed.

What trends will be most pertinent to systems integrators working with VITA technologies?

The trend towards autonomous or SMART systems is one that will greatly affect system integrators working with VITA technologies. VITA technologies will have to support machine learning or artificial intelligence capable of accurately characterizing the environment and recommending the best course of action based on massive data input from sensors and other data sources. VITA systems will need to deliver enormous processing power in a smaller and smaller footprint. From the start, Reflex Photonics was structured to make the smallest rugged optical modules capable of supplying enormous BW and optical channels. Today our rugged technologies are field-proven and well positioned to take advantage of the trend for smarter and smaller systems.

What are the three main reasons your company continues to use whichever VITA technologies you have been using the longest?

Reflex Photonics VITA Technology focus is on optical interconnects such as VITA 66 and 67 standards. We see great benefit from active optical blind-mate connectors to simplify system assembly and upgrades. As well, optical blind-mate connectors reduce space and enable field servicing. Our latest LightCONEX blind mate connector integrates an optical module into the backplane connector, thus eliminating the need for separate optical modules, cables, and cable routing. LightCONEX simplifies board assembly since there is no optical cable to assemble and no chance of cracking the glass fibers during assembly.

What myths about VITA technologies should be put to rest?

Myths we hear are the ruggedness of fiber optic interconnect and the cost of fiber-optics versus electrical interconnects.
Yes, fiber-optics may require some additional handling during installation and maintenance but this is small compared to the numerous benefits such as immunity to EMI, light weight, superior bandwidth, reach and scalability. As well, there are many technical approaches to manage the handling issues and Reflex Photonics can provide solutions.
With respect to cost, fiber optics interconnects are generally more expensive, but one has to consider the overall effectiveness of the systems and the cost of upgrades over the life of the equipment. For example, if the cost of fiber optics increases the system cost by 5% but enhances the system by 20% then one has to decide if the additional 15% effectiveness is worth it. For an expensive aircraft, this may mean the difference of losing that aircraft because it was unable to counter a threat quickly enough. As well, the cost of upgrades could be far greater if one has to replace the electrical with optical interconnects to support more advance technologies.

Sign up for Reflex Photonics' Newsletter

Sign up for Reflex Photonics' Newsletter

Reflex Photonics Newsletter Stay up to date and informed on new products and announcements with our newsletter.
The newsletter is published 6 times a year. (English only)

Your name (required)

Your Email (required)

Your Company

Sign me up for Reflex Photonics' Newsletter

By using this form you agree with the storage and handling of your data by this website. You may withdraw this consent at any time. Visit the Privacy Policy page to learn more.


Military Embedded Systems magazine interviews Mr. Gerry Persaud, V.P. Business Development

Mariana Iriarte, Associated Editor for Military Embedded Systems interviews Mr. Gerry Persaud, V.P. Business Development of Reflex Photonics on the challenges in the design process and where designs are trending for embedded optical modules.

 

Gerald Persaud V.P. Business Development

Embedded optics enabling higher bandwidth computing

Intelligence, surveillance, and reconnaissance (ISR) systems are driving the need for higher bandwidth computing and engineers have turned to ruggedized fiber optics to meet that demand. In this Q&A with Gerald Persaud, Vice President, Business Development at Reflex Photonics, discusses the challenges in the design process and where designs are trending for embedded optical modules; VITA Standards; and how secure communications, ISR, and radar systems are taking advantage of the technology.…Read the full article

Electronic Design magazine: Optical Goes Small and Rugged

LightCONEX

William Wong from Electronic Design magazine writes about the exciting introductions made by Reflex Photonics at VITA’s Embedded Tech Trends 2017.

Optical Goes Small and Rugged

Reflex Photonics’ LightABLE series delivers up to a dozen 10-Gbit/s transmit and receive optical channels that are used in a range of rugged boards.

VITA’s Embedded Tech Trends 2017 conference was host to a range of new optical announcements.
Optical connectivity has significant advantages in electrically noisy, rugged environments. It does not have the crosstalk and distances issues that copper does. Optical connections are able to run faster and over longer distances, making them more desirable in rugged, embedded applications. Copper will still be used when possible because of its lower cost, but… Read the full article

Reflex Photonics’ new facility

Reflex Photonics headquarters | 16771 Ch Ste-Marie, Kirkland, QC H9H 3L1

Reflex Photonics just moved to a new 40,000 ft2 facility that includes 3,500 ft2 of clean rooms and added state-of-the-art manufacturing and R&D equipment. This investment shows Reflex Photonics' commitment to be a reliable supplier and to continue to better serve its customers’ demand s for larger volume, on-time delivery, and quality products.

Military Embedded Systems magazine: Rugged fiber optics for radar applications

Mariana Iriarte, Associated Editor for  Military Embedded Systems interviews Mr. Gerry Persaud, V.P. Business Development of Reflex Photonics about rugged fiber optics for radar applications.

 

Gerald Persaud V.P. Business Development

Rugged fiber optics for radar applications

To meet size, weight, and power (SWaP) requirements as well as higher-bandwidth demands in radar applications, engineers are leaning towards fiber optics as the answer. The challenge is designing them to be rugged to withstand harsh environments. In this Q&A with Gerald Persaud, vice president of business development of Reflex Photonics in Pointe-Claire, Canada and Ray Alderman Chairman of the Board for VITA, they address these challenges… Read the full article